

Best Ticket to Cross Density: the Blue to Red

Bridge

David C. Koo, DEEP, AEGIS, & CANDELS Teams UCO/Lick Observatory, University of California, Santa Cruz 1 August 2016 @ Avalon, Catalina Island

Two Main Take Aways

1) Best ticket for *massive, central, field* galaxies to cross the Bridge from Star Forming (SF) Blue to Quiescent Red galaxies is to reach a threshold (dependent on their galaxy-mass) in their central mass density:

Σ_{1kpc} = Stellar Mass within radius of 1Kpc (~velocity dispersion σ~ BH mass)

2) After normalizing for redshift evolution of SFR vs Mass (Δ SFR) & Σ_{1kpc} vs Mass ($\Delta\Sigma_{1kpc}$), the Bridge is a knee-shaped Universal Path in Δ SFR vs $\Delta\Sigma_{1kpc}$, whether compactifying crossings are slow strolls by bigger galaxies at lower z's or fast sprints by smaller

Overall flow of this talk

After establishing some very basic Terms and Definitions,

highlight our work regarding Σ_{1kpc} and transformation of massive galaxies from star forming to quiescence:

- Cheung+12: DEEP/AEGIS z ~ 0.5 0.8 sample discovers Σ_{1kpc} is tighter than Sersic n in correlation to red galaxies
- Fang+13: SDSS sample shows Σ_{1kpc} threshold for redness is mass dependent and necessary but not sufficient
- Woo+15: SDSS Σ_{1kpc} vs Mhalo shows Σ_{1kpc} varies quenched fraction while Mhalo varies mean sSFR
- Barro+15: CANDELS data confirms mass dependence of Σ_{1kpc} to distant galaxies & knee-shaped

DEFINITIONS/TERMS

Σ_{1kpc} Cleaner than Sersic n for Discriminating Quiescent from Star Forming Galaxies

Σ_{1kpc} Quenching Threshold is Dependent on Galaxy Mass

(Jerome Fang+13)

SDSS & GALEX Non-dusty (b/a) Central:Yang +12 NUV-r(B,GV,Q) M* via M/L

N~2,350

Montage of Same-Mass SDSS Images (Fang+13)

 $0.04 < z < 0.05; 10.25 < \log M_* < 10.5$

Blue SF usually have Low Central Density

Blue SF may have High Central Density

Green Valley have High Central Density

Red Quiescent have High Central Density

Central Mass Density vs Halo Mass Low M_L SERVATORY \Box 10^{8.4} < $\Sigma_{1 \rm kpc}$ M_o^{-1} kpc² < 10^{8.8} 0.25 Joanna Woo et al. (2015) $\square 10^{9.0} < \Sigma_{1 \rm kpc} M_o^{-1} \rm kpc^2 < 10^{9.4}$ $10^{9.6} < \Sigma_{1 \text{kpc}} \text{ M}_o^{-1} \text{ kpc}^2 < 10^{10.0}$ Vormalised Counts 0.20 (a) **SDSS** Centrals 1kpc 0.15 10.0 0.10 10.5 9.5 log $\Sigma_{1 \text{kpc}}$ (M $_{\odot}$ kpc⁻²) 0.05 og SFR/M_{*} (yr⁻¹ 0.00 ij 9.0 -12 -11 -10 -9 log SFR/M_{*} (yr⁻¹) -11.5 $\mathsf{Mid}\ \Sigma_{_{\mathsf{1}\mathsf{k}\mathsf{p}\mathsf{c}}}$ 8.5 $10^{11.8} < M_{\rm h}/M_{\rm h} < 10^{12.0}$ 0.20 $10^{12.2} < M_{\rm h}/M_{\odot} < 10^{12.3}$ 12 Woo et al. (2015) $10^{13.2} < M_{\star}/M_{\star} < 10^{13.5}$ Normalised Counts 8.0 (b) 0.15 halo 12.5 13.0 13.5 14.0 12.0 $\log M_{h} (M_{\odot})$ 0.10 Central mass density affects the number 0.05 ratio of the bimodality * Halo mass affects sSFR 0.00 * 20% of quenched centrals in massive halos -12 -11 -10 -9 log SFR/M_{*} (yr⁻¹) have low $\Sigma_{1 \text{kpc}}$

And the DARK LINE defining the SFR vs M* relation as ASFR.

ANDEI

Guillermo Barro+15

ASFR and $\Delta \Sigma_{1kpc}$ can be used to make new plots. VOILA! We see nearly identical knee-shaped paths at all redshifts.

Guillermo Barro+15

Compact SFGs (in Σ_1) SFGs Quiescent

ANDE

Mushed together, we discover our kneeshaped Universal Path that is the Bridge between Star Forming (SF) Blue to Quiescent Red galaxies (Note 4 main sub-paths)

Barro+15

While the path is universal, in general, smaller galaxies sprint across quickly at high redshifts; larger galaxies stroll across leisurely at low redshifts.

High z ~ 2.2 to 3.0 1.0 Low z ~ 0.5 to

Guillermo Barro+15

ALMA dust maps of 6 Z ~ 2.5 massive, dusty, compact galx. HST stellar masses are 40% larger in

ALMA Shows High Central SFR: Supports Compaction Simulations

Barro+16

1) Best ticket for *massive, central, field* galaxies to cross the Bridge from Star Forming (SF) Blue to Quiescent Red galaxies is to reach a threshold (dependent on their galaxy-mass) in their central mass density:

Σ_{1kpc} = Stellar Mass within radius of 1Kpc

2) After normalizing for redshift evolution of specific SFR vs Mass (Δ sSFR) & Σ_{1kpc} vs Mass ($\Delta\Sigma_{1kpc}$), the Bridge is a knee-shaped Universal Path in Δ sSFR vs $\Delta\Sigma_{1kpc}$, whether compactifying crossings are slow strolls by bigger galaxies at lower

Comment & Implication

 Our Σ_{1kpc} results are quite robust: directly supported by recent high-z studies of Whitaker +16 and with local studies originally by Wake +12 & now Teeimoorinia+16 using central velocity dispersions or that of Bluck+14 for masses of BH (derived from velocity dispersions).

2) Quenching is likely a two part process involving both central "quenching" mechanisms of cold gas removal (AGN, starburst feedback, bulge stabilization of gas) and by outer halo/environment gas heating or removal.

PLENTY of ISSUES LEFT!

Role of AGN and Star Formation Feedback Role of Morphological Quenching (Martig+09) Role of Rejuvenation of Quiescent Galaxies and minor Behavior of Smaller Mass and Satellite Galaxies & additional quenching mechanisms (ram pressure stripping, harassment, tidal stripping, strangulation) Role of Environment