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Roles in galaxy
transformation

Secular Evolution
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Define

‘Secular’

Slow and steady processes
internal to a galaxy.

Not caused by:
- mergers
- AGN feedback
- violent disk instabilities
- environment




Secular processes

* 1) Morphological quenching
+ 2) Bars

* 3) Hot halo quenching



Morphological quenching
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Q

Look at gas disk stability:

Toomre’s instability parameter
g - valid for differentially rotating,
self-sravitating disks
(G & 8

- Q < | is unstable

[Thus, also called “Q-quenching”. (Dekel & Burkert 2014)]
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epicyclic frequency gas velocity dispersion

\ / Toomre’s instability parameter

. - valid for differentially rotating,
Q — O self-gravitating disks
\ - Q < | is unstable

gas surface density

But! A stellar disk can also aid instability:

1 1 4 1
Qtot ans I Qstars




Relevant early-type galaxies features:

) Insignificant stellar disks -> more stable gas -> lower SF efficiency
(Martig et al. 2009, 201 3)




Relevant early-type galaxies features:

) Insignificant stellar disks -> more stable gas -> lower SF efficiency
(Martig et al. 2009, 201 3)

2) High concentration -> more shear -> more stable gas -> lower SF efficiency
(Davis et al. 2014)
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Martig, Crocker et al. 2013

AMR simulation, 5 pc resolution
Same initial gas disk in an elliptical and a spiral

elliptical, fgas=1.3% spiral, fgas=1.3%

SFR = 0.1 Msun/yr SFR = 2.5 Msun/yr



Martig, Crocker et al. 2013

AMR simulation, 5 pc resolution
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Martig, Crocker et al. 2013

AMR simulation, 5 pc resolution
Same initial gas disk in an elliptical and a spiral

elliptical, fgas=1.3%

SFR = 0.1 Msun/yr NGC 524



Martig, Crocker et al. 2013

- Effect limited for higher-mass gas disks:

SFR = 4.8 Msun/yr  SFR = 11.3 Msun/yr



Kennicutt-Schmidt plots

Martig+ |3 simulation:
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Kennicutt-Schmidt plots
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Martig+ |3 observations:
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Kennicutt-Schmidt plots

Martig+ |3 simulation: Martig+ |3 observations:
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Ysrr [Mo yr ! kpe ]

Some tension to this picture...

Martig+| 3:

10°

@® NGC 524 - observed e
A NGC 524 - simulated 7

Observed lower efficiency at high gas densities...



Some tension to this picture...

Martig+| 3: Davis+ 1 4:

10°

@® NGC 524 - observed ol I
A NGC 524 - simulated 7 a)

ok |
i ”[ |

Tdep (Gyr)

Lower efficiency at high gas densities, in the centers of bulges...



Some tension to this picture...

Crocker+12:
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Furthermore, dense gas fractions aren’t low in early-type galaxies...
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Tdep (Gyr)

Davis et al. 2014

‘Dynamical’ quenching hypothesis:
High shear of inner rotation curve is more important.

10:-

(See similar argument for
stability of central high
molecular densities in barred
galaxies in Jogee, Scoville &
Kenney 2005)



Morphological quenching summary

True, observed effect: lower SFE in early-types.

Both lack of a stellar disk and increased shear
should contribute.

Observational signs of high differential rotation
being more important.



Transport gas inward (and
outward).

5 7

Simkin, Shu, & Schwarz 1980



Bars

Inner gas fuels:

Circumnuclear starburst rings maybe not AGN!?
(perhaps cyclically; Jogee, Scoville & Kenney 2005)
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NGC 1097 Cheung+ 2015
(also see Lee+ 2012, Galloway+ 2015)



Bars
May form “pseudobulges” through either:

Vertical heating instabilities Bar buckling

NGC 5746



Secular evolution from a bar in a cosmo/hydro simulation (ErisBH):
Spinoso+ submitted

stellar surface density

z ~ | .4: disk becomes bar unstable
z ~ 0.4: bar forms (maybe triggered by _
passing satellite), gas infall begins

z=042




Secular evolution from a bar in a cosmo/hydro simulation (ErisBH):
Spinoso+ submitted

stellar surface density

z ~ | .4: disk becomes bar unstable
z ~ 0.4: bar forms (maybe triggered by _
passing satellite), gas infall begins

z ~ 0.1: bar buckles to form a pseudo
bulge

z=042




Secular evolution from a bar in a cosmo/hydro simulation (ErisBH):
Spinoso+ submitted

gas surface density
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z ~ |.4: disk becomes bar unstable
z ~ 0.4: bar forms (maybe triggered by ’
passing satellite), gas infall begins

z ~ 0.1: bar buckles to form a pseudo
bulge

z=042

6.5

central 2 kpc ‘dead zone’ which is
quenched due to lack of gas




Secular evolution from a bar in a cosmo/hydro simulation (ErisBH):
Spinoso+ submitted

NGC 1073

central 2 kpc ‘dead zone’ which is
quenched due to lack of gas




Hot Halo Quenching

(aka: halo mass quenching, radio mode feedback)

Nelson+ 2015

ldea: above a certain halo mass (~10'2 M), accreting gas

shock heats and joins a hot halo.
(Birnboim & Dekel 2003, Keres et al. 2005)



05 G Do need (AGN) feedback to
S Gyr
maintain hot halo and prevent
cooling.

Li, Y.+ 2015

Precipitation model: a small
amount of gas cools in a cooling
flow, feeding AGN, reheating halo

back to equilibrium.
(Voit+ 2014)

4.5 Gyr

Density Temp. Lx



Conclusions

Morphological
quenching

Hot halo quenching

Observations: : . Hot halo can prevent cold
i Effective at quenching : ,
definitely occurs. : . gas accretion; cyclical
inner regions of
Theory: shear most : AGN feedback may keep
; spirals.
important (?) heated.



