There and back again: pathways to and from the red-sequence for ISM rich ETGs

Timothy A. Davis Ernest Rutherford Fellow & Lecturer, Cardiff University with the ATLAS3D, HeViCS/HeFoCS/AIFoCS/H-ATLAS and MASSIVE teams

There and back again: pathways to and from the red-sequence for ISM rich ETGs

Timothy A. Davis Ernest Rutherford Fellow & Lecturer, Cardiff University with the ATLAS3D, HeViCS/HeFoCS/AIFoCS/H-ATLAS and MASSIVE teams

 \rightarrow ISM depletion and morphological change are key

 \rightarrow ISM depletion and morphological change are key

More than 40% of early-type galaxies have a cold ISM

Dust (abs and emission) (>40% of ETGS. Upto 10⁷ M_{sun})

(e.g. Goudfrooij et al. 1994, Smith et al., 2012, Rowlands et al., 2012...)

More than 40% of early-type galaxies have a cold ISM

Dust (abs and emission) (>40% of ETGS. Upto 10⁷ M_{sun})

(e.g. Goudfrooij et al. 1994, Smith et al., 2012, Rowlands et al., 2012...)

More than 40% of early-type galaxies have a cold ISM

Atomic gas (>40% in the field. Upto $10^{10} M_{sun}$)

(e.g. Morganti et al., 06, Oosterloo et al., 10, Serra et al., 12...)

Dust (abs and emission) (>40% of ETGS. Upto 10⁷ M_{sun})

(e.g. Goudfrooij et al. 1994, Smith et al., 2012, Rowlands et al., 2012...)

More than 40% of early-type galaxies have a cold ISM

(e.g. Morganti et al., 06, Oosterloo et al., 10, Serra et al., 12...)

Molecular gas (>23% of ETGs. Upto 10⁹ M_{sun})

(e.g. Welch & Sage 2003; Young+ 2011, Alatalo+ 2014, Davis+ 2016)

(e.g. Welch & Sage 2003; Young+ 2011, Alatalo+ 2014, Davis+ 2016)

First clue: detection fractions

Young et al., 2011

A flat detection rate as a function of mass

First clue: detection fractions

MASSIVE survey: Davis et al., in prep

Even at the very highest masses...

Even clearer on the CMD:

- Detections lie throughout the red sequence
- Mass fractions also appear randomly distributed
- Not what you would expect for galaxies in transition

What about the blue tail? Are they transition objects?

- Colour distribution entirely consistent with galaxies from the red sequence that have been *regenerated*
- → Whatever mechanism keeps galaxies quiescent has *failed* in up to 40% of cases...

Young et al., 2014

Colours are not the only evidence of regeneration...

Observationally:

 Gas accretion dominates in field environments

> → Misaligned gas kinematics (Davis+11b, van de Voort et al., 15, Davis & Bureau 16)

Davis+11b

van de Voort et al., 15

Colours are not the only evidence of regeneration...

Observationally:

 Gas accretion dominates in field environments

> → Misaligned gas kinematics (Davis+11b, van de Voort et al., 15, Davis & Bureau 16)

→ Low dust-to-gas/metallicity

(Davis+14d, Beeston+ in prep)

Davis+15

Colours are not the only evidence of regeneration...

Observationally:

 Gas accretion dominates in field environments

> → Misaligned gas kinematics (Davis+11b, van de Voort et al., 15, Davis & Bureau 16)

 \rightarrow Low dust-to-gas/metallicity

(Davis+14d, Beeston+ in prep)

→ HI accretion from environment visible (e.g. Oosterloo et al., 10)

NGC 5103 (D)

Colours are not the only evidence of regeneration...

Observationally:

 Gas accretion dominates in field environments

> → Misaligned gas kinematics (Davis+11b, van de Voort et al., 15, Davis & Bureau 16)

- → Low dust-to-gas/metallicity (Davis+14d, Beeston+ in prep)
- → HI accretion from environment visible (e.g. Oosterloo et al., 10)

→ Shells, tidal streams etc on deep images

(e.g. Duc et al., 2012, 2014)

Colours are not the only evidence of regeneration...

Theoretically:

- Semi Analytic models can match well the HI/H2 mass function and gas mass fractions of ETGs
- → Tracing back in time show the majority of these objects are regenerated

(Lagos, Davis et al., 14a,b)

Colours are not the only evidence of regeneration...

Theoretically:

- Semi Analytic models can match well the HI/H2 mass function and gas mass fractions of ETGs
- → Tracing back in time show the majority of these objects are regenerated

(Lagos, Davis et al., 14a,b)

Colours are not the only evidence of regeneration...

Theoretically:

Hydro: EAGLE shows >15% of galaxies transforming in colour are regenerating

Colours are not the only evidence of regeneration...

Theoretically:

Hydro: EAGLE shows >15% of galaxies transforming in colour are regenerating

Analytically: rates of gas detection and misalignments consistent with expectation from LCDM *minor* merger rates (Davis & Bureau 2016)

So are gas rich ETGs a write off?

(e.g. does ISM depletion always seem to happen before morphology transformation?)

Not so fast: Clusters may be the place to look!

Not so fast: Clusters may be the place to look!

Gas rich cluster ETGs all have:

- Relaxed, aligned gas kinematics
- High gas metallicites
- No easy way to accrete gas and merge...

→ Environment perhaps can change morphology before removing all molecular gas?

1. Gas rich early-type galaxies in field environments: are mostly regenerated objects, on a short term trip there and back again...

2. Suggests that usually gas depletion is first, before morphological change

3. Clusters are our best bet for finding remnant transitioning galaxies with early-type morphologies