



# STAR FORMATION AND NUCLEAR ACTIVITY IN LOCAL STARBURST GALAXIES: A NEAR-INFRARED PERSPECTIVE

H. Jacob Borish GalPath 2016 August 2, 2016

# Part I: Luminous Infrared Galaxies

- Massive, gas-rich galaxy  $L_{IR} [8-1000 \mu m] \ge 10^{11} L_{SUN}$ mergers
- Possess an elevated rate of star formation
- Often contain Active Galactic Nuclei
- Dominant contributor to the IR luminosity density at high redshift



# GOALS (Armus+ 2009)

- Complete subset of RBGS (Sanders+ 2003)
- ~180 LIRGS & ~20 ULIRGS (  $L_{IR} \ge 10^{12} L_{Sun}$  )
- Targeted for Multiwavelength science by Chandra, Galex, Hubble, Spitzer, Herschel, and VLA.
- My contribution is near-infrared spectroscopy from TripleSpec

# GOALS - TripleSpec

- 59 spectra in 42 LIRG systems.
- 13/59 from Apache Point Observatory.
- 46/59 from Palomar Observatory.
- 1 2.5 um in a single pointing.





## **Science Drivers**

- **Gas Excitation:** Diagnosis of Shock or Photoionization emission via ratios of emission lines.
- Hidden AGN: Broad Line Regions (BLRs) or Coronal Lines not visible due to dust extinction in optical observations?
- Gas Kinematics: Evidence of rotation (= dynamical mass estimate) or nuclear outflows?



## Data

- Dominated by strong narrow emission from Paschen and Brackett recombination lines, [S III], He I, [Fe II],
- K band contains many lines of warm H<sub>2</sub>
- Often strong absorption features from the evolved stellar population



#### NIR Diagram (Larkin+ 1998)

[Fe II] traces extended shocks because Fe is typically found in solid phase.

H<sub>2</sub> is also excited in extended partially ionized zones created by shocks. (However it may also be excited via UV fluorescence from hot young stars.)

#### **NIR Diagnostics**

Empirical comparison to low luminosity (i.e., not very dusty) galaxies (star forming and LINERs) and a supernova remnant.



#### Veilleux, Kim, **Optical Diagnostic Diagram** & Sanders (1999)

High lonization



## **Optical Classifications**



### Optical ([O I]/H $\alpha$ ) vs. Near-IR ([Fe II]/P $\beta$ )



- Direct comparison shows rough correlation.
- Expected as strength of low ionization lines depends on extended partially ionized zones created by shocks or X-Rays.

#### Optical ([O I]/H $\alpha$ ) vs. Near-IR (H<sub>2</sub>/B $\gamma$ )



 As suggested by the Near-IR diagnostic diagram, the correlation between H<sub>2</sub>/Bγ and [O I]/Hα is less direct.

#### No Strong Broad Recombination Lines



#### Broad Component Fits (Pβ)



3 of the 10 optical Seyferts in the sample show an indication of faint broad recombination lines, absent in the H<sub>2</sub> line.

## **Three Broad Components**



#### **Kinematics**



 Gaussian fits show 22(27) single(double) component fits to Pa β, 36(19) for Br γ, 41(14) for H<sub>2</sub>S(1) 1-0.

## Blueshifted components (outflows)



- Of the ensemble of detections of Paschen β, five sources show evidence for outflows in excess of ~ 100 km/s.
  - NGC 1275, NGC 5104, NGC 5256, UGC 12150, IC 5298
- Each object has a Seyfert or LINER optical classification.
- Comparison to OH 119 μm a la Veilleux+ 2013.

## Blueshifted components (outflows)



 Only NGC 5256 has an outflow velocity comparable to the highest v measured in OH 119 um by Veilleux+ 2013.

# NGC 5256

Figure 3 from



Outflow driven bubble seen in Xray, Radio, and Optical!



# Summary

- 42 low redshifts LIRGs were surveyed with near-IR spectrograph TripleSpec.
- [Fe II]/Paβ vs. H2/Brγ ratios of this sample overlaps with normal starforming galaxies and the optical diagnostic classification (Veilleux & Osterbrock 1987, Veilleux+ 1999) correlates with the value of the [Fe II]/Paβ ratio, with higher values being associated with LINERs.
- Consistent with the correlation to optical classifications, [Fe II]/Paβ values of the sample, rather than H2/Brγ, correlate more closely with [O I]/Hα, [N II]/Hα, and [S II]/Hα.
- Five of the 42 LIRGs surveyed show evidence of outflows in Pa $\beta$  with velocities > 100 km/s. Outflow velocities are significantly less than what is seen OH 119  $\mu$ m- perhaps a result of the ability of the far-infrared line to probe regions closer to the obscured energy source.