The Role of Major Mergers in (obscured) Black Hole Growth and Galaxy Evolution

Ezequiel Treister P. Universidad Católica Chile

Collaborators: Franz Bauer (PUC), George Privon (PUC), Claudio Rici (PUC), Kevin Schawinski (ETH), Mike Koss (ETH), Francisco Muller-Sanchez (Colorado), Julie Comerford (Colorado), Dave Sanders (Hawaii), Nick Scoville (Caltech), Meg Urry (Yale), Vivian U (UCR), Anne Medling (Caltech), Patricia Arevalo (UV) and others...

Hopkins et al. (2008)

Morphologies at z~1

Kartaltepe et al. 2010

Suzaku X-ray Observations

Teng et al. 2009

The Chandra Perspective

Evolutionary Sequence

AGN Triggering is Luminosity Dependent

Treister et al. 2012

Major mergers/ULIRGs are responsible for 60% of the total black hole growth across cosmic history

Treister et al. 2012

The obscured phase represents ~30% of total accretion onto supermassive black holes

Treister et al. 2010

Heavily Obscured AGN are in Disk and Disturbed/Merger Galaxies

Kocevski et al. 2015

INTEGRAL, Swift BAT NuSTAR

NuSTAR ULIRGs Observations

Teng et al. 2015

ULIRGs Are X-ray Underluminous

Teng et al. 2015

Complete Sample of nearby (U)LIRGs

Nearby (U)LIRGs spanning the merger sequence following the Stierwalt et al. 2013 morphological classification.

NuSTAR Cycle 1 GO Program 200 ksec, 12 targets

- Have existing Chandra Observations
- <120 Mpc away
- log L_{FIR}>11.3 L_o

Name	$\frac{\log L_{IR}}{(\mathrm{erg/s})}$	Merger Stage
MCG+08-18-013	11.34	А
NGC3110	11.37	Α
Arp256	11.48	В
ESO440-IG058_N	11.43	В
ESO440-IG058_S	11.43	В
NGC6286_N	11.37	В
$NGC6286_S$	11.37	В
MCG+12-02-001	11.50	\mathbf{C}
NGC4922	11.38	\mathbf{C}
IRASF18293-3413	11.88	\mathbf{C}
NGC0034	11.49	D
IRASF17138-1017	11.49	D

Complete Sample of nearby (U)LIRGs

NGC6286 (stage B)

Complete Sample of nearby (U)LIRGs NGC6286 (stage B)

AGN Fraction Versus Merger Stage

Ricci et al., in prep.

Compton Thick AGN Fraction

Ricci et al., in prep.

The Dual AGN Phase

Van Wassenhove et al. (2012)

ALMA and IFU Observations of Nearby Dual AGN

Tracing the gas distribution in merging galaxies with:
ALMA (Cycle 2, PI: E. Treister, band 6, CO(2-1), 5 hours, Cycle 3 High resolution CO(2-1) NGC6240)
VLT/MUSE (P95, PI: Treister, 9 hours)
VLT/SINFONI (P93, PI: S. Cales, 16 hours)

$H\alpha$, [OIII] and CO Emission in NGC6240

Privon et al., in prep.

ALMA Cycle 3 Observations of NGC6240

Mrk 463 Chandra

Optical galaxy

X-ray/NIR Nuclei

Bianchi et al., 2008

Mrk 463 MUSE Image

Mrk 463 [OIII] Emission

Mrk 463 Velocity Profile

Mrk 463 [OIII] to Hβ

Mrk 463 MUSE+SINFONI+ALMA

Summary

Clear connection between galaxy mergers and the most luminous AGN activity, which can account for ~60% of the total SMBH growth.

Heavily Obscured (Compton-thick) phase can be ~30% of total BH growth.

Higher (obscured) AGN fraction when the two galaxies are near coalescence.

ALMA and IFU studies of dual AGN show evidence of outflows and potentially feedback effects. These are the sources in which the SMBH-galaxy co-evolution takes place.