Cosmological simulations of major mergers

Martin Sparre

Sapere aude fellow

HITS (Heidelberg)

martinsparre.com

Collaborators:

- Volker Springel (HITS)
- Chris Hayward (CCA Caltech)
- Illustris collaboration
- FIRE collaboration

Zooming in on Illustris galaxies

The SFR-M, relation in Illustris

The star formation main sequence in Illustris

Illustris has a main sequence with a tight scatter
MS, Hayward, Springel

Scatter in the SFR-M_{*} relation agrees with observations

- Scatter in Illustris is consistent with observations.
- The diversity of star formation histories is consistent with observations.

Too few starbursts in Illustris

- Illustris had too few starbusts.
- A potential reason is the 700 pc resolution in Illustris (this is larger than typical starbursting regions).

High-resolution zoom-simulations of Illustris galaxies

- Four major mergers at z=0.5 of galaxies with $M_*\sim 10^{10} M_{sun}$.
- Initial conditions are based on Illustris. The cosmological zoom-in method refines the resolution near the galaxy of interest.
- Mass resolution is 40 times finer than Illustris.

Most idealized setups assume Keplerian orbits

Most idealized setups assume Keplerian orbits

Starbursting gas

Gas depletion timescale and mergers

Observations show that star formation occurs in two modes:

1) A regime where star formation and feedback are self-regulated. Disk galaxies.

2) A starburst mode with a 10-20 times shorter gas depletion timescale. Higher SFRs than for disks. Starbursts are usually mergers.

e.g. Sanders+1991, Scoville+2013

The SFR – M_{ISM} plane

The gas consumption timescale becomes 10 times shorter during a nuclear starburst.

A bursty mode of star formation is present.

This bursty mode becomes more important at high resolution.

Sparre & Springel 2016

The SFR – M_{ISM} plane

Merger orbits

Two of the mergers are head-on

Merger orbits

The orbit of cosmological mergers

- Some mergers approach each other faster than predicted by (E=0) Keplerian orbits.
- Two of the four major mergers collide directly – they are on L=0 orbits.
- Interestingly, there is a correlation between collision speed and strength of starbursts.

Morphological evolution and (the lack of) quenching

Merger remnants at z = 0

Sparre & Springel in prep.

Conclusions about morphology/quenching

- The merger remnants are star-forming. Quenching does not occur.
- At z=0 the halo masses are 10¹² Msun. AGN feedback kicks in at larger masses. This explains the lack of quenching.

Conclusions

- Increasing the resolution makes it possible to form nuclear starbursts within the 'Illustris framework'.
- Some galaxies have collision speeds larger than predicted by E=0 orbits.
- Merger remnants have a diverse morphologies, and they are not quenched.

