Star Formation Suppression due to AGN Feedback

Lauranne Lanz

Caltech/IPAC Dartmouth College

In collaboration with Patrick Ogle, Phil Appleton, and Katherine Alatalo

AGN Feedback in Galaxy Evolution

 Quasar Mode = Radiatively Driven Winds

Warm H₂ Luminous Galaxies

Jet Feedback on ISM

Catalina 2016, L. Lar

Emission

Jet

Jet Feedback on ISM

Measuring the Impact of Radio Jet Feedback on Star Formation Activity

Sample and Observations

- 22 radio galaxies (z < 0.21) from Ogle+2010, Guillard+2012
- UV: GALEX (21/22)
- Optical: SDSS (16/22)
- NIR: 2MASS (22/22)
- MIR: IRAC (16/22), MIPS (18/22), and WISE (22/22)
- FIR: Herschel PACS and SPIRE (19/22)

NGC1266

Catalina 2016, L. Lanz Alatalo, Lacy, Lanz, et al. 2015

Summary

- ~30% of radio galaxies contain large amounts of 100-1500 K H₂, heated by shocks and have L(H₂) ~ L_X, consistent with both being powered by dissipation of mechanical energy from the radio jet.
- Star formation in these galaxies is suppressed by a factor of 3-6, statistically different from normal galaxies, but not clearly correlated with jet feedback indicators.
- For the nearby warm H₂ luminous, molecular outflow-hosting NGC 1266, the suppression of star formation is found primarily outside of the nuclear region.

Questions?

