	Session 3: Mergers and the Role of AGN in Galaxy Transformation I - chair: Phil Appleton		
Galpath16	Jorge Moreno - Galaxy Mergers on FIRE		
Summary	Enhanced nuclear + suppressed off-nuclear (r>2-3kpc) SFR agrees with CALIFA		
Summary	H. Jacob Borish - Probing Ionization Mechanisms and AGN Activity in LIRGs with NIR Spectroscopy		
Day 2	NIR Tspec obs of 42 LIRGs: opt vs. NIR diagnostics agree + discovery of faint broad em lines in Seyferts		
•	Junko Ueda - Does AGN and stellar feedback affect the molecular gas in merger remnants?		
	Discovery of dense nuc disks in 22/28 merger remnants + HV Outflows (3/500 km/s) in 12CO, 13CO and HCN !		
Sanders (1)	George Privon - Large Scale Outflows and Dense Outflows in low-z ULIRGs		
Scoville (12 I)	Dense mol. Outflows in 2 nearby ULIRGs: MUSE (N6240) -> "Make IFUs Great Again"		
Discussion	Haussler, Hahn, Jagannathan, Johnston, Jorgensen, Joshi, Mo, Old, Pawlik, Peletier Posters		
Discussion	Ezequiel Treister - The Role of Major Mergers in (obscured) Black Hole Growth and Galaxy Evolution		
	NuSTAR obs of LIRGs: 30% of AGN growth in CT phase + 60% of MBH due to major mergers		
	Kirsten Larson - Clumpy Star-formation in Local Luminous Infrared Galaxies		
	Paα Paβ maps GOALS LIRGs: SF clump R and SFRs overlap with local MS and with high-z clumps		
	Martin Sparre - High-res cosmo simulations of major mergers: some remnants are SF + have stellar discs		
	Illustrus higer res sims needed to correctly predict obs high SFRs + Merger remnants "are not quenched"		
	Rachael Beaton - Rethinking the Narrative of a Micro-Merger: Impacts on the Host Galaxy Morphology		
	All gals have μ -mergers: tracing results of >10:1 interactions over Virial R = galactic accretion histories		
	Session 4: Mergers and the Role of AGN in Galaxy Transformation II - chair: Tim Davis		
	Phil Hopkins - What Doesn't Quench Star Formation? The Need for AGN		
	"Back to his roots" AGN feedback required for observed suppression of SF in high mass Galaxies/Haloes		
	Vivian U - A Near-Infrared View of Shocks in Nuclear Outflows		
	Osiris-AO NIR observations of local ULIRGs discovers geometry of shocked MG on 10s pc scales		
	Fred Hamann - Extreme Red Quasars in SDSS3-BOSS		
	ERQs are distinct pop with unique-exotic phys conditions: 1000s km/s outflows: ~0.2% of norm-QSOs		
	Ramos-Martinez, Shih, Shivaei, Smith, Suess, Terrazas, Vayner, Wender, Wiens, Lacy Posters		
	Lauranne Lanz - Star Formation Suppression due to AGN Feedback		
	SF suprpessed by x2-3 in RGs with jets and <u>SPOGs Unmasked</u> : the 1 st SPOG is not really a SPOG		
	Duncan Farrah - Star Formation in Luminous Quasars at 2 <z<3< td=""></z<3<>		
	SFRs of lum QSOs remain "constant" (300M/yr !) over 2 < z < 3 + higher SFR correlates with higher accr rate		
	Brooke Simmons - Detailed visual morph of 200,000 gals at 0.25 <z<4 and="" from="" galaxy="" hubble="" imaging<="" legacy="" td="" zoo=""></z<4>		
	150,000 Citizen Scis => 12M vis class of 200,000 HST images from HST Deep Fields: "they" are as good as "us"		

what don't we understand ??

a little indulgence please, (ALMA in future)

Arp 220 @ 10 mas res. → 40 pc what are conditions in late stage merger

ISM evolution in 300 galaxies at z > 1 ISM is critical fuel for SF (& AGN)
→ nature of starbursts in mergers

is SF different at high z ??

West

East

A_V > 2000 mag towards nuclei !!

at 2.6 mm dust emission West $T_B = 120 \text{ K} \sim T_D$ ==> optically thick

at 2.6 mm dust emission West $T_B = 120 \text{ K}$ (expect ~170 K for $10^{12} \text{ L}_{\odot}$ R ~ 15 pc)

 $\rightarrow \underline{\tau \sim 1}$ at 2.6 mm !!

→ $N_{H2} = 2x10^{26} \text{ cm}^{-2}$, $A_V = 10^5 \text{ mags }!!$

 M_{ISM} (west compact nucleus) ~ 2x10⁹ M_o R < 16 pc

 $n_{\rm H2} \sim 10^6 \, {\rm cm}^{-3}$

dust column \rightarrow A_V = 10⁶ mags !!!!!!!

 $= 600 \text{ gr cm}^{-2}$

~ 2 m thick concrete wall !!~ 1 ft of gold

can you suppress AGN feedback ?

ISM masses are critical to understanding galaxy evolution & SF and AGN activity

using long λ dust emission to estimate ISM masses

 $F_{RJ} \alpha M_{gas}$ (dust/gas) opacity, T_D/D^2 calibrate from local galaxies

using long wavelength dust emission to get ISM masses

empirical basis :

gas masses from RJ dust emission

ISM masses increase above the main sequence !!

→ increase in SFRs above the MS largely due to larger ISM masses

analytic fit :

SFR = 30 ± 12
$$\left(\frac{M_{mol}}{10^{10} M_{sun}}\right)^{1.1 \pm 0.1} \left(\frac{1+z}{3}\right)^{0.8 \pm 0.3} M_{sun} yr^{-1}$$

our work **→**

single, linear SF law at z = 1 to 6 and on MS and above MS

$$SFR = 30 \left(\frac{M_{mol}}{10^{10} M_{sun}} \right)^{1.1 \pm 0.1} \left(\frac{1+z}{3} \right)^{0.8 \pm 0.3} M_{sun} yr^{-1}$$
$$\Rightarrow \tau_{ISM \rightarrow stars} = \frac{M_{ISM}}{SFR} \approx 2 - 6x10^8 yrs (2 - 5x faster than z = 0)$$

huge accretion rates replace entire ISM w/i 3-7x10⁸ yrs

why is SF more rapid per unit gas mass at z > 1??

for ALMA Bands 3 - 7 predict :

dynamical mass from rotation curve

West Nucleus

East Nucleus

systemic velocity gas turbulence disk inclination major axis rotation curve :	V_{sys} FWHM Δv i PA	5528 km s^{-1} 120 km s ⁻¹ 45° 50°
CO emissivity:	point mass mass at < 130 pc	$<10^8~{\rm M}_\odot \\ \sim 1.5\times10^9 {\rm M}_\odot$
	0 peak falls a factor 2 receding side 2× brighter.	at R< 5 pc at R \sim 10 pc . out to 100 pc.

velocity disp.disk thickness