Reconciling Dwarf Galaxies with LCDM Cosmology

Andrew Wetzel Caltech - Carnegie Fellow

with Phil Hopkins, Shea Garrison-Kimmel, Ji-hoon Kim, Dusan Keres, Claude-Andre Faucher-Giguere, Eliot Quataert

The Carnegie Observatories

dwarf galaxies: the most significant challenges to the Cold Dark Matter (CDM) model

(nearly) self-similar structure formation in CDM

1000s of subhalos

Abell 2744

1000s of galaxies

12 bright satellites $(L_V > 10^5 L_{\odot})$

'missing satellites' problem: CDM predicts too many dark-matter subhalos compared with observed satellite galaxies

Andrew Wetzel

'too big to fail' problem: CDM predicts dark-matter subhalos that are much denser than observed satellite galaxies

Andrew Wetzel

'core-cusp' problem: CDM predicts dark-matter halos with steeper inner density profiles than observed galaxies

Andrew Wetzel

dwarf galaxies: significant challenges to the Cold Dark Matter (CDM) model

'missing satellites' problem

CDM predicts too many dark matter subhalos compared with observed satellite galaxies

—> Can a CDM-based model produce satellites with observed distribution of stellar masses?

'too big to fail' problem

CDM predicts dark-matter subhalos that are **too dense** compared with observed satellite galaxies

—> Can a CDM-based model produce satellites with observed distribution of stellar velocity dispersions?

Caltech - Carnegie

dwarf galaxies: significant challenges to the Cold Dark Matter (CDM) model

possible solutions

- 1. dark matter is not 'standard' CDM examples: warm dark matter, self-interacting dark matter
- 2. standard CDM + baryonic physics

The Local Group

Andrew Wetzel

The Latte Project: the Milky Way on FIRE

simulating a Milky Way-mass galaxy with a realistic population of satellite dwarf galaxies in LCDM

model for gas and star formation

- High resolution to capture structure of multi-phase inter-stellar medium
 - \odot m_{gas} = 7070 M_{sun}
 - hgas = 1 pc (min), 25 pc (typical)
 - h_{dm} = 20 pc
 - \circ t_{step,min} = 180 yr

- Cooling from atoms, molecules, and 9 metals down to 10 K
- Star formation only in self-gravitating clouds

model for stellar feedback

- Heating:
 - Supernovae: core-collapse (II) and Ia
 - Stellar Winds: massive O-stars & AGB stars
 - Photoionization (HII regions) + photoelectric heating
- Explicit Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

- Supernovae
 - $\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$
- Stellar Winds $\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$

stellar scale

galaxy scale

Caltech - Carnegie

Latte simulations run on the Stampede supercomputer supported by NSF XSEDE

each MW-mass simulation is massively parallel: 2048 cores CPU time: 720k hours wall time: 15 days

Eedback In Realistic Environments

Caltech - Carnegie

cosmological zoom-in simulation to achieve high resolution

dark matter-only simulation

dark matter with effects of baryons

host galaxies at z = 0 $M_{star} = 7 \times 10^{10} M_{sun}$

successful formation of 'thin' and 'thick' stellar disk similar to Milky Way

The Latte Project: the Milky Way on FIRE

population of satellite dwarf galaxies

stellar masses of satellite galaxies

Andrew Wetzel

Caltech - Carnegie

dwarf galaxies: significant challenges to the Cold Dark Matter (CDM) model

'missing satellites' problem

CDM predicts too many dark matter subhalos compared with observed satellite galaxies

—> Can a CDM-based model produce satellites with observed distribution of stellar masses?

'too big to fail' problem

CDM predicts dark-matter subhalos that are **too dense** compared with observed satellite galaxies

—> Can a CDM-based model produce satellites with observed distribution of stellar velocity dispersions?

Caltech - Carnegie

What causes the lack of (massive) satellite dwarf galaxies?

- Stellar feedback drives significant gas outflows/inflows that dynamically heat dark matter, reducing the inner density (cores)
- 2. Stellar disk of Milky Way-mass host galaxy destroys satellites (via tidal shocking, etc)

inclusion of baryons —> stellar disk destroys dark-matter subhalos

dark matter in dark-matter-only dark matter in baryonic simulation

dark-matter subhalo mass function

Andrew Wetzel

What causes the lack of (massive) satellite dwarf galaxies around the Milky Way-mass host?

- Stellar feedback drives significant gas outflows/inflows that dynamically heat dark matter, reducing the inner density (cores)
- 2. Stellar disk of Milky Way-mass host galaxy destroys satellites (via tidal shocking, etc)

dwarf galaxies have bursty star formation

Caltech - Carnegie

dwarf galaxies have bursty star formation

see also, e.g., Read & Gilmore 2005, Pontzen & Governato 2012, Di Cintio et al 2014, Chan et al 2015, etc

stellar feedback drives gas outflows/inflows that produce dark-matter cores

Andrew Wetzel

The Latte Project: the Milky Way on FIRE

Caltech - Carnegie

MW-mass progenitor at z = 6

300 kpc (physical)

MW-mass progenitor at z = 2.5

300 kpc (physical)

The Latte Project: the Milky Way on FIRE

Caltech - Carnegie