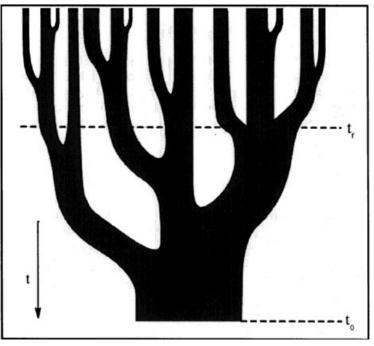


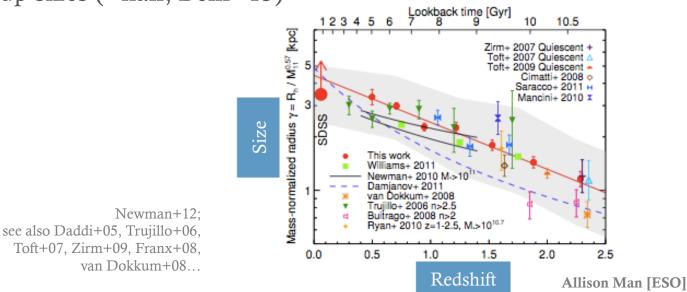
An emerging consensus on the merger rate of massive galaxies at z=0-3

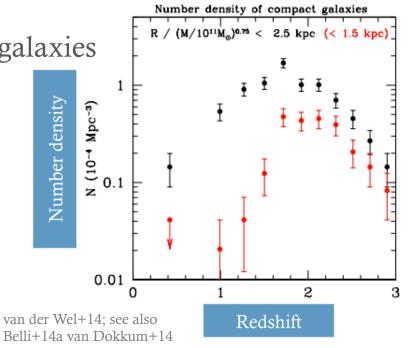
Allison Man


European Southern Observatory, Garching HQ

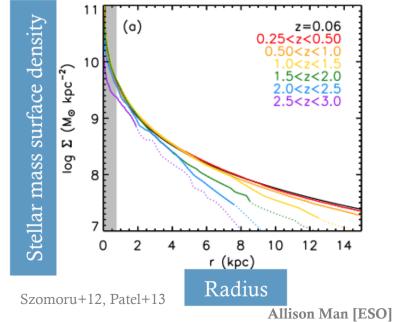
with Sune Toft & Andrew Zirm

Dark Cosmology Centre

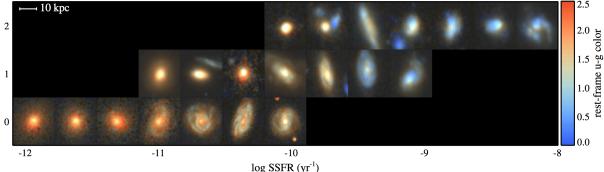

• Hierarchical assembly = Backbone of LCDM


A merger tree, Lacey & Cole 1993

- Hierarchical assembly = Backbone of LCDM
- Post-mortem growth of quiescent galaxies


- Hierarchical assembly = Backbone of LCDM
- Post-mortem growth of quiescent galaxies
 - Puff up sizes (~half, Belli+15)

- Hierarchical assembly = Backbone of LCDM
- Post-mortem growth of quiescent galaxies
 - Puff up sizes (~half, Belli+15)
 - Destroy compact ones

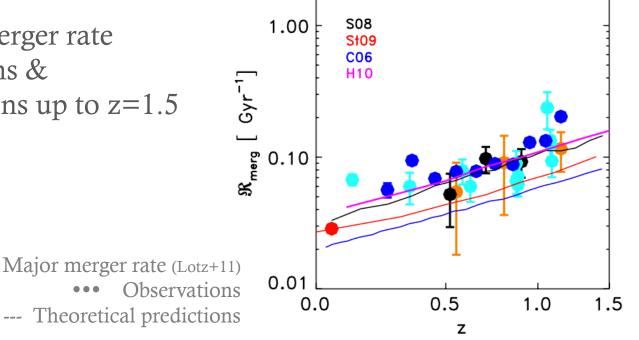


- Hierarchical assembly = Backbone of LCDM
- Post-mortem growth of quiescent galaxies
 - Puff up sizes (~half, Belli+15)
 - Destroy compact ones
 - Mass growth at outskirts

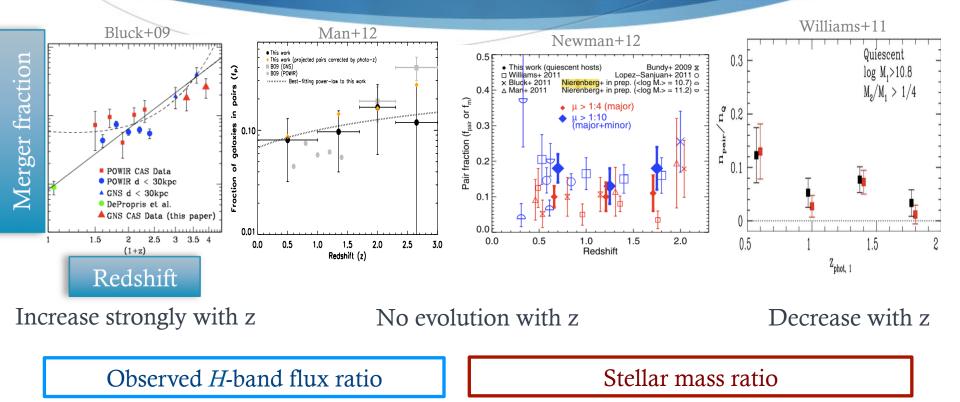
- Hierarchical assembly = Backbone of LCDM
- Post-mortem growth of quiescent galaxies
 - Puff up sizes (~half, Belli+15)
 - Destroy compact ones
 - Mass growth at outskirts
 - Negative color gradient

redshift

Szomoru+11; see also van Dokkum+10, Guo+11, Gargiulo+12, Szomoru+13


- How often do massive galaxies merge?
- Is merging responsible for the evolution of any galaxy properties?

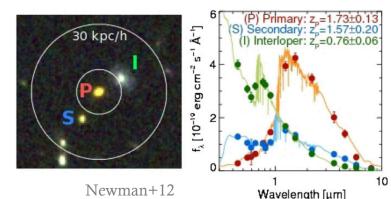
• How often do massive galaxies merge?


• Is merging responsible for the evolution of any galaxy properties?

Consistent merger rates at z<1.5

 Consistent major merger rate between observations & theoretical predictions up to z=1.5

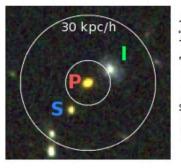
Discrepant merger fractions at z~2

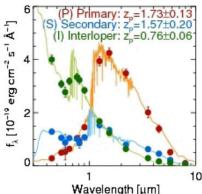


Galaxy merger rate – this work

- Mergers of massive galaxies of M_★>10^{10.8}M_☉
 - Projected separations 10-30 kpc/h
 - Matching photo-z's

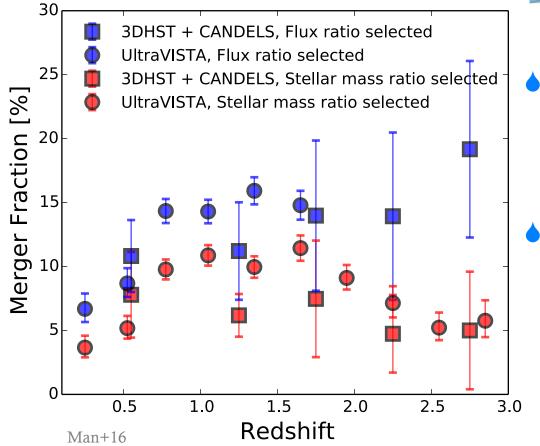
 $|z_1-z_2|/(z_1+1) < 0.2 (0.1)$ at z > 1 (z < 1)


- Stellar mass or H-band flux ratio between
 1 4 (major) or 4 10 (minor)
- Merger rate (# mergers / galaxy / unit time)
 - = Merger fraction / timescale (Lotz + 2010)


Galaxy merger rate – this work

- Mergers of massive galaxies of M_★>10^{10.8}M_☉
 - Projected separations 10-30 kpc/h
 - Matching photo-z's
 - $|z_1-z_2|/(z_1+1) < 0.2 (0.1)$ at z > 1 (z < 1)

Stellar mass or H-band flux ratio between


Newman+12

Survey	Ref	Area [deg ²]	Depth (5 σ)	FWHM
UltraVISTA / COSMOS	Muzzin+13	1.62	K=23.8	0.75"
CANDELS	Skelton+14	0.25	H=26.9	0.18"

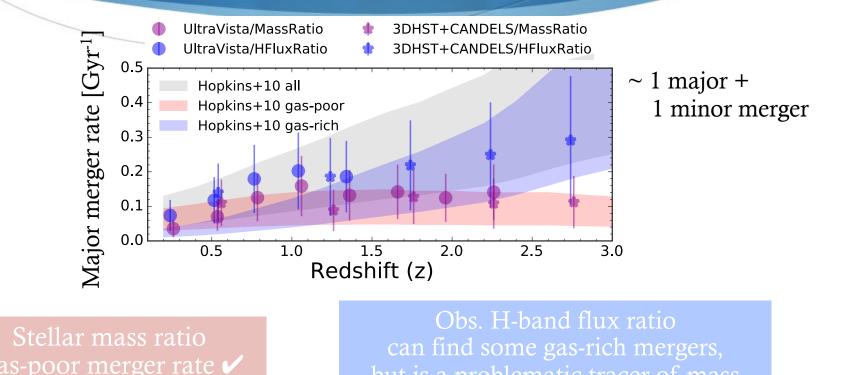
Largest M_{\star}-complete sample of photometrically selected mergers at z>1

Major merger fraction – results

Observed H-band flux ratio

- → increasing trend
- → higher on average
- Stellar mass ratio
 - → diminishing trend

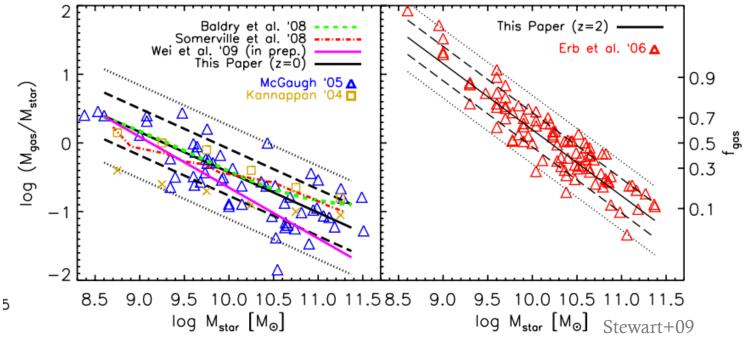
Stellar mass ratio vs Flux ratio


- What are the major *flux ratio* mergers at *z*=2-2.5?
 - ~ 19% major <u>stellar mass</u> ratio
 - ~ 19% minor <u>stellar mass</u> ratio
 - ~ 61% very minor (< 1:10) <u>stellar mass</u> ratio
- Observed *H*-band corresponds to bluer rest-frame wavelength at higher *z*
 - More sensitive to SF (hence gas mass) than stellar mass

z=2.3Flux ratio = 3.6 (major) Stellar mass ratio = 8.3 (minor)

HST/WFC3 H₁₆₀ 12"x12"

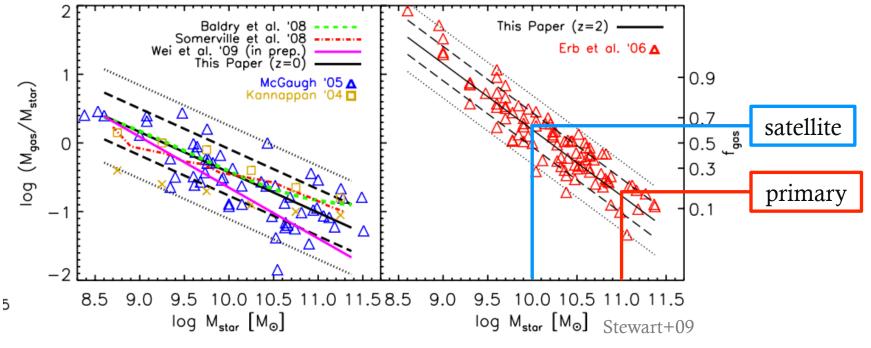
Galaxy merger rates – observed vs predicted



If merging timescale shorter at higher-z, may find better match (Synder + in prep.)

Gas fraction f_{gas} (M_{*}, z)

Gas fraction:


- Increases with redshift
- Decreases with stellar mass

Gas fraction f_{gas} (M_{*}, z)

Gas fraction:

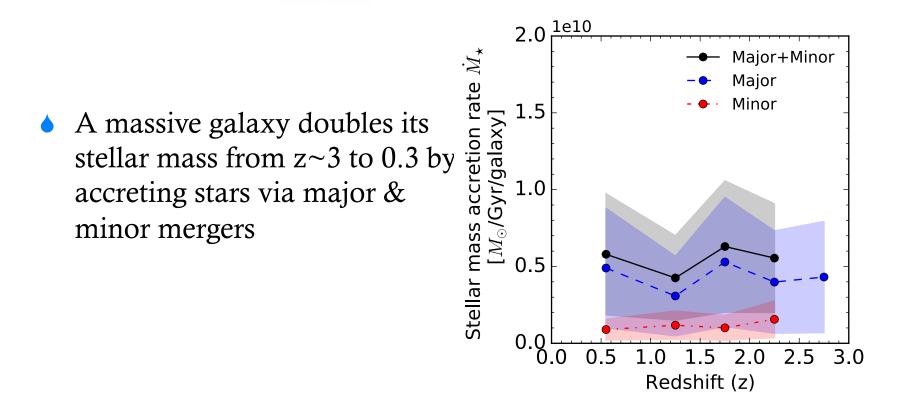
- Increases with redshift
- Decreases with stellar mass

Gas fraction f_{gas} (M_{*}, z)

Gas fraction:

- Increases with redshift
- Decreases with stellar mass

 $2 \mathbf{F}^{1} \mathbf{F}^{1}$


	z~2	Stellar mass	Gas mass	Baryon mass	
r.)	Primary	10 ¹¹ (80%)	$\sim 2.5 \ge 10^{10} (20\%)$	1.25 x 10 ¹¹	
(M _{gas} /M _{star})	Satellite	10 ¹⁰ (40%)	$\sim 1.5 \ge 10^{10}$ (60%)	$2.5 \ge 10^{10}$	atellite
(M _{gos}	Ratio	10 : 1 (minor)	~ 1.7 : 1 (major)	5 : 1 (minor)	
log	-1			2 2 - 0.1 p	orimary
5	8.5 9.0	9.5 10.0 10.5 11.0 Iog M _{stor} [M _☉]		0.5 11.0 11.5 Jo] Stewart+09	

The missing gas-rich mergers at z>2

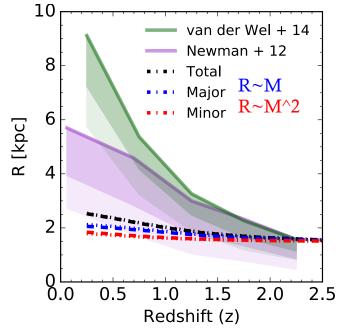
If only <u>stellar mass ratio</u> is considered, we miss out on the gasrich mergers at z>2 that have the right <u>baryon mass ratio</u>

Stewart+09

- How often do massive galaxies merge?
- Is merging responsible for the evolution of any galaxy properties?

Stellar mass accretion rate

Size evolution of quiescent galaxies


Average sizes of quiescent galaxies need to increase their sizes ~3-5 times

(Newman+12, van der Wel+14)

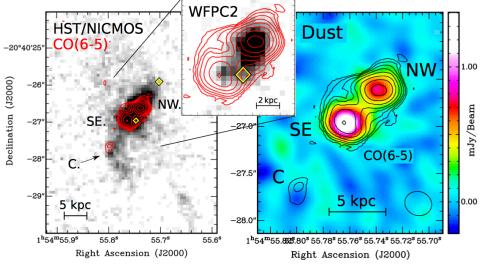
Major + minor mergers can at most double the size from $z\sim 2.5$ to 0

 \rightarrow Need other mechanisms to explain the observed size evolution

Merger-driven size evolution models based on Naab+09; Hilz+13

The missing gas-rich mergers at z>2

If only <u>stellar mass ratio</u> is considered, we miss out on the gas-rich mergers at z>2 that have the right <u>baryon mass ratio</u>


Stewart+09

Gas-rich mergers can:

↑ Merger contribution to cosmic SF budget

 ↓ Merger contribution to size evolution of quiescent galaxies (dissipation → more compact merger remnant)

ALMA can find the missing mergers

Dragonfly Galaxy: z~2 merger of massive galaxy (Emonts+15)

- CO (6-5) kinematics inconsistent with a single rotating structure
- Tidal debris on larger scale

Conclusions

- Discrepant merger fraction at z~2 across NIR observations: due to merger definition
 - Stellar mass ratio can find gas-poor mergers, but missing some gas-rich mergers at z>2
 - Observed *H*-band flux ratio can find some gas-rich mergers at z>2, but problematic tracer for mass
- Need <u>molecular gas mass</u> measurement for a complete understanding of merger role in galaxy evolution
 - Size growth
 - Stellar mass growth
 - Fueling SF & AGN