

How to Quench Massive Galaxies

Andreas Faisst (Caltech/IPAC)

with

Marcella Carollo (ETH Zurich), Peter Capak (Caltech), and the COSMOS team

afaisst@caltech.edu http://www.astro.caltech.edu/~afaisst @astrofaisst

GalPath August 2016 - Catalina Island

1. Star-forming galaxies live on **M-SFR relation**

1. Star-forming galaxies live on **M-SFR relation**

2. Star-forming galaxies follow **M-R relation**

1. Star-forming galaxies live on **M-SFR relation** 2. Star-forming galaxies follow **M-R relation**

3. Fraction of quiescent galaxies increases with time

10

0.5

Re (kpc)

1. Star-forming galaxies live on **M-SFR relation** 2. Star-forming galaxies follow **M-R relation**

3. Fraction of quiescent galaxies increases with time

4. Quiescent galaxies form M-R relation

Quenching depends on various parameters

Environment: large- and small-scale structure
 stripping and heating of cold gas used for star formation
 Merger + starburst + AGN + quick consumption of gas
 ...

Quenching depends on various parameters

- ◆ Environment: large- and small-scale structure
 ▶ stripping and heating of cold gas used for star formation
 ▶ Merger + starburst + AGN + quick consumption of gas
 ▶ ...
- + Mass: halo mass, stellar mass (density)
 - \blacktriangleright Heating of (infalling) gas through $> 10^{12}$ M $_{\odot}\,$ halo
 - Stabilization of disk against star formation (well, maybe not)

Quenching depends on various parameters

- ◆ Environment: large- and small-scale structure
 ▶ stripping and heating of cold gas used for star formation
 ▶ Merger + starburst + AGN + quick consumption of gas
 ▶ ...
- Mass: halo mass, stellar mass (density)
 - Heating of (infalling) gas through > 10^{12} M $_{\odot}$ halo
 - Stabilization of disk against star formation (well, maybe not)

And eventureen

These processes act on different time scales

- Strangulation, starvation, etc
 - may act on several Gyrs
- mergers, stripping, etc
 - may act on dynamical time scales (couple of 100 Myrs)

These processes act on different time scales

- + There is likely a mass dependence, too
 - Different quenching mechanisms act at different stellar masses

These processes act on different time scales

- There is likely a mass dependence, too
 - Different quenching mechanisms act at different stellar masses

These processes act on different time scales

- + There is likely a mass dependence, too
 - Different quenching mechanisms act at different stellar masses

focus on massive (logM > 11) galaxies at z < 2

Plan:

1) Consistently model evolution of SF and QU galaxies

- 2) Constrain quenching time-scales
- 3) Fantasize about quenching mechanisms

We have various relations for the average galaxy parameters

- + Stellar mass vs. star formation relation (Main sequence)
- + Size stellar mass relation (MS relation) This is new

Model to predict size evolution of quiescent galaxies

Simple model to predict size evolution of quiescent galaxies

Simple model to predict size evolution of quiescent galaxies

Simple model to predict size evolution of quiescent galaxies

Let's model it! - More qualitatively

Simple model to predict size evolution of quiescent galaxies

Quench most massive galaxies, (log M > 11)

1. SF galaxies stay on M-SFR-R plane as long as forming stars.

Let's model it! - More qualitatively

Simple model to predict size evolution of quiescent galaxies

Quench most massive galaxies, (log M > 11)

1. SF galaxies stay on M-SFR-R plane as long as forming stars.

2. At a certain mass, they start to experience quenching (Peng+10)

Let's model it! - More qualitatively

Simple model to predict size evolution of quiescent galaxies

Quench most massive galaxies, (log M > 11)

1. SF galaxies stay on M-SFR-R plane as long as forming stars.

Massive galaxies are rare. → Use COSMOS/UltraVISTA:

- ▶ large area (2 deg²)
- deep NIR imaging (UltraVISTA Y Ks band)

Massive galaxies are rare. → Use **COSMOS**/UltraVISTA:

- ▶ large area (2 deg²)
- deep NIR imaging (UltraVISTA Y Ks band)
- ... but UltraVISTA is ground based... can we measure sizes accurately??
 - Use CANDELS/COSMOS (H-band) to calibrate size measurement

Massive galaxies are rare. → Use COSMOS/UltraVISTA:

- ▶ large area (2 deg²)
- deep NIR imaging (UltraVISTA Y Ks band)
- ... but UltraVISTA is ground based... can we measure sizes accurately??
 - Use CANDELS/COSMOS (H-band) to calibrate size measurement

Massive galaxies are rare. → Use COSMOS/UltraVISTA:

- ▶ large area (2 deg²)
- deep NIR imaging (UltraVISTA Y Ks ba

... but UltraVISTA is ground based...
 can we measure sizes accurately??
 ▶ Use CANDELS/COSMOS (H-band) to calibrate size measurement

Sizes of star-forming and quiescent massive galaxies are similar at fixed redshift and logM > 11.5.

How to quench massive galaxies

Simple model to predict size evolution of quiescent galaxies Measured this for high masses! 1. SF galaxies stay or M-SFR-R plane as long as forming stars. 2.5 2. At a certain mass, they start **2.** start quenching when $P_q(m,z) = 75\%$ to experience quenching (Peng+10) 2.0 3. consumption 1. mass increase of gas size growth on MS 1.5 3. Quenching mechanisms: τ_{cons} log SFR 1.0 Zobs a) gas cut-off: 4. joining red cloud after gas deplete gas in disk within Gyrs 0.5 star-forming is consumed main sequence b) Instantaneous: 0.0 instantaneous quenching at Zobs red sequence -0.510.5 11.0 11.5 12.0 10.0log M

Faisst et al 2016d, submitted

How to quench massive galaxies

Gas cut-off? (slow quenching 500 Myrs to Gyrs)

How to quench massive galaxies

Faisst et al 2016d, submitted

3

1.5 2

3

%

 $\mathbf{\gamma}$

2

1

Conclusions

Very massive SF and QU galaxies **trace similar size evolution** (in normalization and slope).

We **model size evolution of QU galaxies** from SF galaxies for short and long quenching time scale.

Very massive galaxies (logM > 11) favor **fast quenching** (< 500 Myrs): Probably merger + starburst!

- Good agreement observations (size growth of individual massive galaxies by mergers at logM>11, Fagioli+16)
- Good agreement with simulations (Wetzel+, Hahn+, etc)

Conclusions

Very massive SF and QU galaxies **trace similar size evolution** (in normalization and slope).

We model size evolution of QU galaxies from SF galaxies for short and long quenching time scale.

Very massive galaxies (logM > 11) favor **fast quenching** (< 500 Myrs): Probably merger + starburst!

- Good agreement observations (size growth of individual massive galaxies by mergers at logM>11, Fagioli+16)
- Good agreement with simulations (Wetzel+, Hahn+, etc)

... and... we'll get HST near-IR imaging of massive (logM>11.2) quiescent z~2 galaxies to study their structure in detail!

