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ALFALFA, Ha3 sample: HI-normal galaxies only

z~0: Star Formation tracks stellar disk

At z~0 stars dominate local potential

Disks

Fossati et al., 2013:
Narrow band image of Local 
Supercluster



Resolved star formation at 0.7<z<2.6
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KMOS3D

Credit: Emily Wisnioski

• Mapping Hα+[NII] flux and kinematics for 
~mass-selected galaxies @ z=0.7-2.6 

• Largest GTO Program: 75 nights
• 3DHST selection



Credit: Emily Wisnioski

Hα Detections

Detections:
•76% TOTAL
•88% On or Above SF Main Sequence 
•19% Below SF Main Sequence

86% of detected galaxies are 
spatially resolved

detection
non-detection



Wisnioski et al. 2015: z~1: 93% of the galaxies have clear disk-like kinematics



z~2: 74% of the galaxies have clear disk-like kinematicsWisnioski et al. 2015:
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Image Fitting: continuum (stars) 
and Hα (star formation) 

Wilman et al. in prep



Galaxy Growth in Disks

Wilman et al. in prep

σ=0.17dex



“Observables” to Environment
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Fossati et al., in prep. based on public 3DHST survey 
0.5<z<2.0



0 1 2 3 4 5 6 7

Time since Infall (Gyr)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
ac

tio
n

0.50 < z < 0.80

9.0 9.5 10.0 10.5 11.0 11.5
log(M∗)

0.0

0.2

0.4

0.6

0.8

1.0

P
as
si
ve

F
ra
ct
io
n

log(Mhalo) < 13.0

Centrals

Satellites

9.0 9.5 10.0 10.5 11.0 11.5
log(M∗)

log(Mhalo) > 13.0

Satellite Quenching

Fossati et 
al., in prep
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Quenching by Lack of external accretion

Continues to form 
stars for tquench t = tquench



Satellite Quenching

Fossati et al., in prep
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• Does not depend strongly on halo mass (massive clusters not considered)
• Consistent with quenching of SF by lack of external accretion
• Gas continues to fuel SF for many Gyr (longer than molecular gas supply), 
especially in low mass galaxies



Spatially Resolved Satellite Quenching

Wetzel et al., 2012
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Spatially Resolved Satellite Quenching

Wetzel et al., 2012



with DW, Peter Erwin, John Beckman, Leonel Guiterrez, Roberto Saglia

Sandesh Kulkarni

H-Alpha Galaxy Groups 
Imaging Survey



Where do stars form?

Kulkarni et al., in prep= Amount of stars forming relative to that expected
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Where do stars form?

Kulkarni et al., in prep= Amount of stars forming relative to that expected
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Signature of Gravitational Interactions
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• Type II (truncated) profiles for normally star 
forming, typically late type spirals and irregulars
• Type III (anti-truncated) profiles for passive 
galaxies



Conclusions

• Growth via Star Formation: 
• In normally evolving galaxies, star formation is ubiquitous throughout the disk.
• The half-light size of this disk is only slightly larger than that of the existing 
stellar disk at z>1.

• Quenching of Star Formation in Satellite Galaxies:
• Star formation can be quenched when the gas supply dries up in satellite 
galaxies.
• This typically takes a long time, suggesting satellite galaxies in most groups 
retain most of their gas after infall.
• At low redshift, many galaxies with globally low SFR form stars only in their 
cores - many of these are satellites of groups, suggesting outside-in environmental 
quenching. 
• This is unlikely to be just ram-pressure as stellar profiles are also different in 
quenched galaxies. Gravitational interactions (tidal interactions / mergers) are 
likely to be important.




