The UV Properties of SPOGs
Felipe Ardila¹, Katherine Alatalo², Lauranne Lanz³

¹Princeton University, ²Observatories of the Carnegie Institution of Washington, ³IPAC/California Institute of Technology

SPOGs
- Shocked Post-starburst Galaxies Survey (Alatalo et al. 2016)
- Search for galaxies that are currently undergoing rapid transitions from blue cloud late-type spirals to red sequence early-type galaxies with
 - shocks (via ionized gas diagnostics)
 - young stars (via Balmer absorption)
- 1067 total SPOGs

GALEX Data
- FUV: 1516 ± 268 Å
- NUV: 2267 ± 732 Å
- SExtractor Kron aperture photometry
- 257 detected in NUV and FUV
- 655 detected in NUV only
- 4 detected in FUV only
- 151 not detected in either band

Results
- SPOGs occupy a similar region to LTGs (distinct from PSGs) in UV color and magnitude space with a much larger spread in colors and magnitudes (Fig. 1)
- On average SPOGs have a more negative (bluer) FUV-NUV color than LTGs, while PSGs have a more positive (redder) FUV-NUV color than LTGs and SPOGs
- UV strength does not seem to correlate with BPT diagram location (Fig. 3)
 - exception in [NII]/Hα diagram (Fig. 3 top): weaker NUV detections seem to be clustered in SF region, while stronger UV detections mostly spread through AGN/LINER and composite regions

Discussion
- SPOGs are a heterogeneous set with various possible origins for the UV emission:
 - starburst (contamination)
 - intermediate-aged stars
 - AGN
 - shocks
- BPT clustering of NUV-weak SPOGs could be showing where low redshift, low metallicity dwarf interlopers are concentrated?