Surprising Inefficiency of Ram Pressure Stripping and Feedback in Quenching the Lowest Mass Milky Way Satellites

Andrew Emerick1,2, Mordecai-Mark Mac Low2,3, Jana Grci\v{c}ev2, Andrea Gatto4

1Dept. Of Astronomy, Columbia University, New York, NY
2Dept. of Astrophysics, American Museum of Natural History, New York, NY
3Institut für Theoretische Astrophysik, Zentrum für Astronomie der Uni. Heidelberg, Heidelberg, Germany
4Max-Planck-Institut für Astrophysik, Garching, Germany

emeric@astro.columbia.edu

Background:

The fraction of quenched satellites approaches unity for the lowest mass galaxies ($M < 10^7 M_\odot$). These galaxies are expected to rapidly and efficiently quench via ram pressure stripping (RPS) within ~ 2 Gyr of infall into their host halo. Supernova (SN) feedback is expected to play an important role in setting the quenching efficiency in these tiny galaxies.

We produce the first high resolution, 3D hydro simulations of RPS and feedback in these tiny galaxies, asking:

1. Can RPS + feedback alone be responsible for rapid quenching?
2. How important is feedback in stripping these low mass galaxies?

Methods:

We place two model dwarf galaxies in a wind-tunnel, simulating stripping with the AMR hydro code FLASH. These galaxies experience a constant P_{ram} for 2 Gyr, using $n_{\text{h}} = 10^{-4} \text{ cm}^{-3}$ and a wind velocity of either 200 km s^{-1} or 400 km s^{-1}. Our fiducial resolution is 9 pc; a resolution study shows this is sufficient to resolve both RPS and stripping from KH instabilities (see paper).

Core collapse (CC) SNe explode stochastically with a rate that scales with the cold gas content. Type 1a SNe explode at a constant rate throughout the simulation. We compare stripping without feedback, and with an increased SN rate. Initial conditions are given in Table 1.

Results and Conclusion:

Our results are given in Figure 1, summarized below. Example density slices of the simulated galaxies are shown in Figure 2.

1. Ram pressure can cause substantial mass loss for these low mass dwarfs, but cannot produce stripping within 2 Gyr in the more realistic 200 km s^{-1} simulations. Additional physics must be at play.
2. SN feedback plays a minimal role in aiding quenching. SNe are too infrequent in these low star formation rate galaxies.

To account for the expected quenching timescales, some combination of additional physics, including tidal stripping of the satellite by the host, satellite-satellite tidal interactions during infall, cosmologically accurate orbits, or a denser / clumpier Milky Way halo may be necessary to account for the expected stripping times (see paper).

Table 1: Initial conditions for dwarf galaxy models for an initially isothermal gas distribution in HSE with a static NFW DM profile. *Core collapse SN rates evolve with galaxy gas mass

<table>
<thead>
<tr>
<th>Property</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{DM} ($r < 300 \text{pc}$)</td>
<td>$7.3 \times 10^6 M_\odot$</td>
<td>$7.3 \times 10^6 M_\odot$</td>
</tr>
<tr>
<td>r_{scale}</td>
<td>795 pc</td>
<td>795 pc</td>
</tr>
<tr>
<td>M_{gas}</td>
<td>$2.4 \times 10^5 M_\odot$</td>
<td>$4.7 \times 10^5 M_\odot$</td>
</tr>
<tr>
<td>$n_{\text{o,gas}}$</td>
<td>0.75 cm^{-3}</td>
<td>1.50 cm^{-3}</td>
</tr>
<tr>
<td>r_{gas}</td>
<td>300 pc</td>
<td>300 pc</td>
</tr>
<tr>
<td>$T_{\text{o,gas}}$</td>
<td>6000 K</td>
<td>6000 K</td>
</tr>
<tr>
<td>CC SNR**</td>
<td>$\frac{1}{52} \text{ Myr}^{-1}$</td>
<td>$\frac{1}{7.7} \text{ Myr}^{-1}$</td>
</tr>
<tr>
<td>Type Ia SNR</td>
<td>$\frac{1}{145} \text{ Myr}^{-1}$</td>
<td>$\frac{1}{43} \text{ Myr}^{-1}$</td>
</tr>
</tbody>
</table>

**Core collapse SN rates evolve with galaxy gas mass

Acknowledgements:

Support provided by NSF GRFP Grant No. DGE-11-44155 (AE), NSF grant AST11-09395 and Humboldt FND (M-MML), Davis Fellowship (JG), and DFG SPP 1573 (AG). Computational resources provided from NSF XSEDE (TG-MCA99S024) and Columbia Univ. Software used in this work: \texttt{FLASH}, yt analysis toolkit (Turk et. al. 2011), Scipy, astropy, numpy.